Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230065, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497271

RESUMO

The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Sistema Imunitário
2.
Sci Adv ; 9(36): eadh8990, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683000

RESUMO

Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.


Assuntos
Estudo de Associação Genômica Ampla , Ostreidae , Animais , Aclimatação , Epigênese Genética , Síndrome , Variação Genética
3.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751557

RESUMO

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Assuntos
Coinfecção , Ostreidae , Animais , Humanos , Ecossistema , Bioensaio , Comportamento Cooperativo
4.
Anim Microbiome ; 5(1): 26, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138356

RESUMO

BACKGROUND: The Pacific oyster Crassostrea gigas is one of the main cultivated invertebrate species worldwide. Since 2008, oyster juveniles have been confronted with a lethal syndrome known as the Pacific Oyster Mortality Syndrome (POMS). POMS is a polymicrobial disease initiated by a primary infection with the herpesvirus OsHV-1 µVar that creates an oyster immunocompromised state and evolves towards a secondary fatal bacteremia. RESULTS: In the present article, we describe the implementation of an unprecedented combination of metabarcoding and metatranscriptomic approaches to show that the sequence of events in POMS pathogenesis is conserved across infectious environments. We also identified a core bacterial consortium which, together with OsHV-1 µVar, forms the POMS pathobiota. This bacterial consortium is characterized by high transcriptional activities and complementary metabolic functions to exploit host's resources. A significant metabolic specificity was highlighted at the bacterial genus level, suggesting low competition for nutrients between members of the core bacteria. CONCLUSIONS: Lack of metabolic competition between the core bacteria might favor complementary colonization of host tissues and contribute to the conservation of the POMS pathobiota across distinct infectious environments.

5.
Mar Drugs ; 20(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36547892

RESUMO

Big defensins are two-domain antimicrobial peptides (AMPs) that have highly diversified in mollusks. Cg-BigDefs are expressed by immune cells in the oyster Crassostrea gigas, and their expression is dampened during the Pacific Oyster Mortality Syndrome (POMS), which evolves toward fatal bacteremia. We evaluated whether Cg-BigDefs contribute to the control of oyster-associated microbial communities. Two Cg-BigDefs that are representative of molecular diversity within the peptide family, namely Cg-BigDef1 and Cg-BigDef5, were characterized by gene cloning and synthesized by solid-phase peptide synthesis and native chemical ligation. Synthetic peptides were tested for antibacterial activity against a collection of culturable bacteria belonging to the oyster microbiota, characterized by 16S sequencing and MALDI Biotyping. We first tested the potential of Cg-BigDefs to control the oyster microbiota by injecting synthetic Cg-BigDef1 into oyster tissues and analyzing microbiota dynamics over 24 h by 16S metabarcoding. Cg-BigDef1 induced a significant shift in oyster microbiota ß-diversity after 6 h and 24 h, prompting us to investigate antimicrobial activities in vitro against members of the oyster microbiota. Both Cg-BigDef1 and Cg-BigDef5 were active at a high salt concentration (400 mM NaCl) and showed broad spectra of activity against bacteria associated with C. gigas pathologies. Antimicrobial specificity was observed for both molecules at an intra- and inter-genera level. Remarkably, antimicrobial spectra of Cg-BigDef1 and Cg-BigDef5 were complementary, and peptides acted synergistically. Overall, we found that primary sequence diversification of Cg-BigDefs has generated specificity and synergy and extended the spectrum of activity of this peptide family.


Assuntos
Crassostrea , Defensinas , Animais , Defensinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/metabolismo
6.
Genetica ; 150(5): 247-262, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36083388

RESUMO

Correctly delimiting species and populations is a prerequisite for studies of connectivity, adaptation and conservation. Genomic data are particularly useful to test species differentiation for organisms with few informative morphological characters or low discrimination of cytoplasmic markers, as in Scleractinians. Here we applied Restriction site Associated DNA sequencing (RAD-sequencing) to the study of species differentiation and genetic structure in populations of Pocillopora spp. from Oman and French Polynesia, with the objectives to test species hypotheses, and to study the genetic structure among sampling sites within species. We focused here on coral colonies morphologically similar to P. acuta (damicornis type ß). We tested the impact of different filtering strategies on the stability of the results. The main genetic differentiation was observed between samples from Oman and French Polynesia. These samples corresponded to different previously defined primary species hypotheses (PSH), i.e., PSHs 12 and 13 in Oman, and PSH 5 in French Polynesia. In Oman, we did not observe any clear differentiation between the two putative species PSH 12 and 13, nor between sampling sites. In French Polynesia, where a single species hypothesis was studied, there was no differentiation between sites. Our analyses allowed the identification of clonal lineages in Oman and French Polynesia. The impact of clonality on genetic diversity is discussed in light of individual-based simulations.


Assuntos
Antozoários , Animais , Antozoários/genética , Estruturas Genéticas , Metagenômica , Análise de Sequência de DNA , Especificidade da Espécie
7.
BMC Biol ; 20(1): 167, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879753

RESUMO

BACKGROUND: Chimeras are genetically mixed entities resulting from the fusion of two or more conspecifics. This phenomenon is widely distributed in nature and documented in a variety of animal and plant phyla. In corals, chimerism initiates at early ontogenic states (larvae to young spat) and results from the fusion between two or more closely settled conspecifics. When compared to genetically homogenous colonies (non-chimeras), the literature has listed ecological and evolutionary benefits for traits at the chimeric state, further positioning coral chimerism as an evolutionary rescue instrument. However, the molecular mechanisms underlying this suggestion remain unknown. RESULTS: To address this question, we developed field monitoring and multi-omics approaches to compare the responses of chimeric and non-chimeric colonies acclimated for 1 year at 10-m depth or exposed to a stressful environmental change (translocation from 10- to 2-m depth for 48h). We showed that chimerism in the stony coral Stylophora pistillata is associated with higher survival over a 1-year period. Transcriptomic analyses showed that chimeras lose transcriptomic plasticity and constitutively express at higher level (frontload) genes responsive to stress. This frontloading may prepare the colony to face at any time environmental stresses which explain its higher robustness. CONCLUSIONS: These results show that chimeras are environmentally robust entities with an enhanced ability to cope with environmental stress. Results further document the potential usefulness of chimeras as a novel reef restoration tool to enhance coral adaptability to environmental change, and confirm that coral chimerism can be an evolutionary rescue instrument.


Assuntos
Antozoários , Aclimatação , Animais , Antozoários/genética , Quimera , Larva/genética , Estresse Fisiológico/genética
8.
Microbiome ; 10(1): 85, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659369

RESUMO

BACKGROUND: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS: We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.


Assuntos
Crassostrea , Microbiota , Animais , Aquicultura , Crassostrea/genética , Sistema Imunitário , Transcriptoma
9.
Genes (Basel) ; 13(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328078

RESUMO

A parasite's lifestyle is characterized by a critical dependency on its host for feeding, shelter and/or reproduction. The ability of parasites to exploit new host species can reduce the risk associated with host dependency. The number of host species that can be infected by parasites strongly affects their ecological and evolutionary dynamics along with their pathogenic effects on host communities. However, little is known about the processes and the pathways permitting parasites to successfully infect alternative host species, a process known as host shift. Here, we tested whether molecular plasticity changes in gene expression and in molecular pathways could favor host shift in parasites. Focusing on an invasive parasite, Tracheliastes polycolpus, infecting freshwater fish, we conducted a transcriptomic study to compare gene expression in parasites infecting their main host species and two alternative host species. We found 120 significant differentially expressed genes (DEGs) between parasites infecting the different host species. A total of 90% of the DEGs were identified between parasites using the main host species and those using the two alternative host species. Only a few significant DEGs (seven) were identified when comparing parasites from the two alternative host species. Molecular pathways enriched in DEGs and associated with the use of alternative host species were related to cellular machinery, energetic metabolism, muscle activity and oxidative stress. This study strongly suggests that molecular plasticity is an important mechanism sustaining the parasite's ability to infect alternative hosts.


Assuntos
Doenças dos Peixes , Parasitos , Animais , Doenças dos Peixes/parasitologia , Água Doce , Interações Hospedeiro-Parasita/genética , Transcriptoma/genética
10.
Front Immunol ; 12: 630343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679773

RESUMO

The Pacific oyster (Crassostreae gigas) has been introduced from Asia to numerous countries around the world during the 20th century. C. gigas is the main oyster species farmed worldwide and represents more than 98% of oyster production. The severity of disease outbreaks that affect C. gigas, which primarily impact juvenile oysters, has increased dramatically since 2008. The most prevalent disease, Pacific oyster mortality syndrome (POMS), has become panzootic and represents a threat to the oyster industry. Recently, major steps towards understanding POMS have been achieved through integrative molecular approaches. These studies demonstrated that infection by Ostreid herpesvirus type 1 µVar (OsHV-1 µvar) is the first critical step in the infectious process and leads to an immunocompromised state by altering hemocyte physiology. This is followed by dysbiosis of the microbiota, which leads to a secondary colonization by opportunistic bacterial pathogens, which in turn results in oyster death. Host and environmental factors (e.g. oyster genetics and age, temperature, food availability, and microbiota) have been shown to influence POMS permissiveness. However, we still do not understand the mechanisms by which these different factors control disease expression. The present review discusses current knowledge of this polymicrobial and multifactorial disease process and explores the research avenues that must be investigated to fully elucidate the complexity of POMS. These discoveries will help in decision-making and will facilitate the development of tools and applied innovations for the sustainable and integrated management of oyster aquaculture.


Assuntos
Crassostrea/microbiologia , Crassostrea/virologia , Vírus de DNA/isolamento & purificação , Infecções por Herpesviridae/veterinária , Fatores Etários , Animais , Crassostrea/genética , Infecções por Herpesviridae/mortalidade , Microbiota , Temperatura , Vibrio/isolamento & purificação
11.
Wellcome Open Res ; 6: 195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35252590

RESUMO

Background: Pocillopora acuta is a hermatypic coral with strong ecological importance. Anthropogenic disturbances and global warming are major threats that can induce coral bleaching, the disruption of the mutualistic symbiosis between the coral host and its endosymbiotic algae. Previous works have shown that somaclonal colonies display different levels of survival depending on the environmental conditions they previously faced. Epigenetic mechanisms are good candidates to explain this phenomenon. However, almost no work had been published on the P. acuta epigenome, especially on histone modifications. In this study, we aim at providing the first insight into chromatin structure of this species. Methods: We aligned the amino acid sequence of P. acuta core histones with histone sequences from various phyla. We developed a centri-filtration on sucrose gradient to separate chromatin from the host and the symbiont. The presence of histone H3 protein and specific histone modifications were then detected by western blot performed on histone extraction done from bleached and healthy corals. Finally, micrococcal nuclease (MNase) digestions were undertaken to study nucleosomal organization. Results: The centri-filtration enabled coral chromatin isolation with less than 2% of contamination by endosymbiont material. Histone sequences alignments with other species show that P. acuta displays on average ~90% of sequence similarities with mice and ~96% with other corals. H3 detection by western blot showed that H3 is clipped in healthy corals while it appeared to be intact in bleached corals. MNase treatment failed to provide the usual mononucleosomal digestion, a feature shared with some cnidarian, but not all; suggesting an unusual chromatin structure. Conclusions: These results provide a first insight into the chromatin, nucleosome and histone structure of P. acuta. The unusual patterns highlighted in this study and partly shared with other cnidarian will need to be further studied to better understand its role in corals.

12.
Front Microbiol ; 11: 1579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754139

RESUMO

Juvenile Pacific oysters (Crassostrea gigas) are subjected to recurrent episodes of mass mortalities that constitute a threat for the oyster industry. This mortality syndrome named "Pacific Oyster Mortality Syndrome" (POMS) is a polymicrobial disease whose pathogenesis is initiated by a primary infection by a variant of an Ostreid herpes virus named OsHV-1 µVar. The characterization of the OsHV-1 genome during different disease outbreaks occurring in different geographic areas has revealed the existence of a genomic diversity for OsHV-1 µVar. However, the biological significance of this diversity is still poorly understood. To go further in understanding the consequences of OsHV-1 diversity on POMS, we challenged five biparental families of oysters to two different infectious environments on the French coasts (Atlantic and Mediterranean). We observed that the susceptibility to POMS can be different among families within the same environment but also for the same family between the two environments. Viral diversity analysis revealed that Atlantic and Mediterranean POMS are caused by two distinct viral populations. Moreover, we observed that different oyster families are infected by distinct viral populations within a same infectious environment. Altogether these results suggest that the co-evolutionary processes at play between OsHV-1 µVar and oyster populations have selected a viral diversity that could facilitate the infection process and the transmission in oyster populations. These new data must be taken into account in the development of novel selective breeding programs better adapted to the oyster culture environment.

13.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156821

RESUMO

Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , Imunidade Inata , Animais , Infecções por Vírus de DNA/genética , Vírus de DNA/patogenicidade , Perfilação da Expressão Gênica , Poli I-C/imunologia , Regulação para Cima
14.
Front Microbiol ; 11: 311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174904

RESUMO

Pacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and causes important economic losses. Disease dynamic was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 µVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to protect oysters against POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favor of POMS. After 5 days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that 5 days of transplantation were long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oysters families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.

15.
BMC Genomics ; 21(1): 63, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959106

RESUMO

BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). RESULTS: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. CONCLUSIONS: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.


Assuntos
Crassostrea/genética , Crassostrea/microbiologia , Animais , Crassostrea/imunologia , Crassostrea/metabolismo , Genes , RNA-Seq , Estresse Fisiológico/genética , Transcriptoma
16.
Dis Aquat Organ ; 135(2): 97-106, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31342911

RESUMO

The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.


Assuntos
Herpesviridae , Vibrio , Animais , Crassostrea , DNA Viral , Água do Mar
17.
Proc Natl Acad Sci U S A ; 116(28): 14238-14247, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221761

RESUMO

Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.


Assuntos
Interações Hospedeiro-Patógeno/genética , Ostreidae/microbiologia , Vibrioses/genética , Vibrio/genética , Animais , Citoplasma/genética , Citoplasma/microbiologia , Hemócitos/microbiologia , Fagocitose/genética , Especificidade da Espécie , Vibrio/patogenicidade , Vibrioses/patologia
18.
Nat Commun ; 9(1): 4215, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310074

RESUMO

Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the Ostreid herpesvirus OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.


Assuntos
Bacteriemia/imunologia , Crassostrea/imunologia , Crassostrea/virologia , Herpesviridae/fisiologia , Terapia de Imunossupressão , Viroses/imunologia , Viroses/virologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Crassostrea/microbiologia , Hemócitos/efeitos dos fármacos , Hemócitos/patologia , Hemócitos/virologia , Proteínas Inibidoras de Apoptose/metabolismo , Fenótipo , Replicação Viral/efeitos dos fármacos
19.
Microbiome ; 6(1): 39, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463295

RESUMO

BACKGROUND: Although the term holobiont has been popularized in corals with the advent of the hologenome theory of evolution, the underlying concepts are still a matter of debate. Indeed, the relative contribution of host and environment and especially thermal regime in shaping the microbial communities should be examined carefully to evaluate the potential role of symbionts for holobiont adaptation in the context of global changes. We used the sessile, long-lived, symbiotic and environmentally sensitive reef-building coral Pocillopora damicornis to address these issues. RESULTS: We sampled Pocillopora damicornis colonies corresponding to two different mitochondrial lineages in different geographic areas displaying different thermal regimes: Djibouti, French Polynesia, New Caledonia, and Taiwan. The community composition of bacteria and the algal endosymbiont Symbiodinium were characterized using high-throughput sequencing of 16S rRNA gene and internal transcribed spacer, ITS2, respectively. Bacterial microbiota was very diverse with high prevalence of Endozoicomonas, Arcobacter, and Acinetobacter in all samples. While Symbiodinium sub-clade C1 was dominant in Taiwan and New Caledonia, D1 was dominant in Djibouti and French Polynesia. Moreover, we also identified a high background diversity (i.e., with proportions < 1%) of A1, C3, C15, and G Symbiodinum sub-clades. Using redundancy analyses, we found that the effect of geography was very low for both communities and that host genotypes and temperatures differently influenced Symbiodinium and bacterial microbiota. Indeed, while the constraint of host haplotype was higher than temperatures on bacterial composition, we showed for the first time a strong relationship between the composition of Symbiodinium communities and minimal sea surface temperatures. CONCLUSION: Because Symbiodinium assemblages are more constrained by the thermal regime than bacterial communities, we propose that their contribution to adaptive capacities of the holobiont to temperature changes might be higher than the influence of bacterial microbiota. Moreover, the link between Symbiodinium community composition and minimal temperatures suggests low relative fitness of clade D at lower temperatures. This observation is particularly relevant in the context of climate change, since corals will face increasing temperatures as well as much frequent abnormal cold episodes in some areas of the world.


Assuntos
Acinetobacter/isolamento & purificação , Antozoários/microbiologia , Antozoários/parasitologia , Arcobacter/isolamento & purificação , Dinoflagelados/isolamento & purificação , Oceanospirillaceae/isolamento & purificação , Acinetobacter/genética , Animais , Arcobacter/genética , DNA Intergênico/genética , Dinoflagelados/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Oceanospirillaceae/genética , RNA Ribossômico 16S/genética , Simbiose/fisiologia
20.
Dev Comp Immunol ; 75: 16-27, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257854

RESUMO

The fresh water snail Biomphalaria glabrata is one of the vectors of the trematode pathogen Schistosoma mansoni, which is one of the agents responsible of human schistosomiasis. In this host-parasite interaction, co-evolutionary dynamic results into an infectivity mosaic known as compatibility polymorphism. Integrative approaches including large scale molecular approaches have been conducted in recent years to improve our understanding of the mechanisms underlying compatibility. This review presents the combination of integrated Multi-Omic approaches leading to the discovery of two repertoires of polymorphic and/or diversified interacting molecules: the parasite antigens S. mansoni polymorphic mucins (SmPoMucs) and the B. glabrata immune receptors fibrinogen-related proteins (FREPs). We argue that their interactions may be major components for defining the compatible/incompatible status of a specific snail/schistosome combination.


Assuntos
Antígenos de Helmintos/genética , Biomphalaria/imunologia , Imunoglobulinas/genética , Mucinas/genética , Schistosoma mansoni/imunologia , Esquistossomose/imunologia , Animais , Antígenos de Helmintos/metabolismo , Evolução Biológica , Biomphalaria/parasitologia , Vetores de Doenças , Interações Hospedeiro-Parasita , Humanos , Imunoglobulinas/metabolismo , Mucinas/metabolismo , Polimorfismo Genético , Proteômica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...